Fysikermøtet

Last week I had a pleasure to attend Fysikermøtet 2019 – a meeting of Norwegian physicists in academia, industry, and schools. The plenary talks, starting from the story about lasers given by the 2012 Nobel laureate Serge Haroche and ending with not-so-impossible-anymore visions of smart farming and transport by Bjørn Tore Orvik, were a proper boost of inspiration. So hearing about all this state-of-the-art progress in fusion, superconductors, imaging of atoms, or solar energy, I should ask myself why studying mineral materials? Is there still any progress to be made? Can the same material that is used to produce blackboard chalk be also used to manufacture extremely durable ceramics?

At Fysikermøtet 2019, you could chat with me about contacts between reactive solids.

My take on this is rather optimistic as advanced materials based on abundant minerals already exist and are produced on a global scale. Unfortunately, this rarely happens in industrial processes, but it is mastered by organisms when they produce functional biominerals. Marine organisms produce their skeletons and functional devices from what they can find locally and in abundance. These might be not the best existent materials for a given specific function, but they are possible to get with little effort; an example for us to follow.

Although the way to go might seem still long, we learn more and more about reactive mineral particles, which comprise the smallest building blocks of mineral-based materials. Some very recent findings show that the interactions between these particles can be affected by the amount and type of even the most common ionic species dissolved in waters, not to mention the more complex interactions with organics. Experiments like that, are necessary to develop a meticulous recipe of how to control interactions between mineral particles; having it, will bring us closer to engineer the materials we need.